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1. Introduction 

Cardiovascular diseases (CVDs) represent a significant global health challenge, 

remaining the leading cause of mortality worldwide [1]. These diseases, which affect the 

heart and blood vessels, encompass a wide range of conditions, including coronary heart 

disease, cerebrovascular disease, and peripheral arterial disease. The World Health 

Organization reports that CVDs are responsible for an estimated 31% of all deaths 

globally, with a disproportionate impact on low- and middle-income countries. 

The complex nature of CVDs, involving multiple risk factors and intricate physiological 

mechanisms, necessitates advanced analytical approaches for better understanding, 
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Abstract 

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, and accurate 

predictive models are essential for improving prevention and management strategies. 

This study addresses the challenge of enhancing CVD risk prediction through 

correlation-based graph construction and weighted link prediction algorithms. Using 

Pearson and Spearman correlation methods, we transformed a comprehensive dataset 

containing 1025 patient records and 14 key features into graph structures. Correlation-

based graph construction captures feature dependencies by representing variable 

relationships as edges in a network. To evaluate the effectiveness of the graph 

representations, we applied weighted link prediction algorithms, including Weighted 

Common Neighbors (WCN), Weighted Preferential Attachment (WPA), and Weighted 

Jaccard Coefficient (WJC). The Pearson correlation-based network demonstrated 

exceptional performance, with the WCN algorithm achieving an Area Under the Curve 

(AUC) of 99.80% and a Precision of 48.0%. In contrast, the Spearman correlation-based 

network showed robust results, with WJC achieving an AUC of 96.60% and Precision 

of 67.16%. The comparative analysis, conducted using Python in a Jupyter environment 

and employing libraries such as NetworkX and various statistical libraries, highlights 

the superior ability of correlation-based graphs to capture linear and non-linear 

relationships in CVD data. While promising, the study acknowledges limitations related 

to dataset size and computational complexity. Our findings suggest that correlation-

based graph methods significantly enhance CVD prediction, offering a more personalized 

CVD prevention and management approach. 
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prediction, and management. Traditional risk assessment tools, while valuable, often fall 

short of capturing the full complexity of cardiovascular health. This limitation has 

spurred research into novel methodologies that can provide more comprehensive 

insights into the interplay of various factors contributing to CVDs [2]. 

Recent advancements in data science and network analysis offer promising avenues for 

enhancing our understanding of CVDs. Graph theory, in particular, provides a powerful 

framework for representing and analyzing complex relationships within medical data. 

By representing patient data as nodes and their relationships as edges in a graph, it 

becomes possible to uncover hidden patterns and associations that may not be apparent 

through conventional statistical methods [29]. 

This study proposes a novel approach to cardiovascular disease analysis that leverages 

correlation-based graph construction and weighted link prediction algorithms. Our 

method aims to transform cardiovascular disease data into graph structures, enabling the 

application of advanced network analysis techniques. By employing different correlation 

measures and combining their results, we seek to capture a more nuanced representation 

of the relationships within the data. 

The core of our approach involves constructing multiple graph representations of 

cardiovascular disease data and applying weighted link prediction algorithms to these 

graphs. This methodology allows us to explore the predictive power of various graph 

structures and prediction algorithms in the context of CVDs. We aim to identify which 

combinations of graph construction methods and link prediction algorithms yield the 

most insightful and accurate results. 

By advancing the application of network analysis in cardiovascular diseases, this research 

aims to contribute to developing more sophisticated tools for disease prediction, risk 

assessment, and relationship prediction. The insights gained from this study could 

potentially inform the creation of more personalized and effective CVD prevention and 

management strategies. 

In the following sections, we will detail our methodology, present the results of our 

analysis, and discuss the implications of our findings. We will also address the limitations 

of our approach and suggest potential avenues for future research in this critical area of 

health informatics. 

2. Related work 

Recent years have witnessed significant advancements in cardiovascular disease (CVD) 

prediction and analysis, with researchers employing various computational methods to 

enhance accuracy and efficiency. This section critically examines recent studies in this 

field, focusing on machine-learning approaches, feature selection techniques, and 

network-based methods. 

2.1 Machine Learning Approaches 

Machine learning algorithms have demonstrated considerable promise in CVD 

prediction. Convolutional neural networks (CNNs) have shown high accuracy, as 

evidenced by Mehmood et al.’s (2021) CardioHelp method, which achieved an accuracy 
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of 97% [3]. While this result is impressive, the study’s reliance on a single dataset may 

limit its generalizability. 

Decision tree and random forest algorithms have consistently performed well across 

multiple studies. Rahman et al. (2022) developed a web-based heart disease prediction 

system utilizing thirteen health parameters and eight algorithms, with decision tree and 

random forest algorithms achieving an accuracy of 99% [5]. Similarly, Khan et al. (2023) 

found the random forest algorithm to be the most accurate in their machine learning-

based model for CVD prediction [6]. However, these studies’ high accuracy rates warrant 

cautious interpretation, as they may indicate potential overfitting issues. 

Ensemble methods have shown the potential to improve prediction accuracy. Dritsas and 

Trigka (2023) demonstrated that the Stacking ensemble model performed better after 

applying the Synthetic Minority Over-Sampling Technique (SMOTE) [9]. This approach 

addresses class imbalance issues common in medical datasets, but its effectiveness may 

vary depending on the specific dataset characteristics. The study by Alfaidi et al. (2022) 

explores using ML for CVD diagnosis. Seven algorithms were tested on a cardiovascular 

dataset, with Chi-square tests identifying key predictive features. The Multi-Layer 

Perceptron achieved the highest accuracy (87.23%), indicating the promise of AI in 

assisting early diagnosis of heart disease. Baghdadi et al. (2023) proposed using the 

Catboost model, which outperformed existing methods with an average accuracy of 

90.9% [7]. While promising, this study’s results highlight the ongoing challenge of 

achieving consistently high accuracy across diverse datasets and populations. 

2.2 Feature Selection and Data Analysis 

Identifying key features for CVD prediction has been the focus of several studies, aiming 

to improve model efficiency and interpretability. Guernaros-Nolasco et al. (2021) 

analyzed ten machine-learning algorithms to identify the most predictive features for 

CVDs [4]. However, their study did not provide a comprehensive ranking of feature 

importance across all algorithms, which could have offered valuable insights. 

Mahmoud et al. (2021) developed a model combining genetic algorithms and recursive 

feature elimination for feature selection, demonstrating excellent accuracy and 

performance [8]. This hybrid approach shows promise in optimizing feature selection, 

but its computational complexity may limit its applicability in real-time clinical settings. 

Tallin et al. (2022) identified eight key clinical features for heart disease diagnosis, 

including chest pain and the number of major blood vessels [14]. While this study 

provides a concise set of predictive features, it may oversimplify the complex nature of 

CVD by focusing on a limited number of factors. 

Tanyildizi Kokkulonk (2023) used multiple linear regression for heart disease 

classification, achieving an accuracy of 88% and noting the minimal impact of age data 

on predictions [11]. This finding contradicts some previous studies and warrants further 

investigation into the role of age in CVD prediction across different populations. 

2.3 Network-based and Graph Theory Approaches 

Recent research has explored the potential of network-based methods and graph theory 

in CVD analysis, offering new perspectives on disease relationships and comorbidities. 
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Garcia del Valle et al. (2021) introduced a Metapath-based method for predicting disease 

comorbidities, which demonstrated higher accuracy compared to traditional methods by 

utilizing clinical data and heterogeneous networks [13]. This approach shows promise in 

capturing complex disease interactions, but its computational requirements may pose 

challenges for large-scale implementations. 

Wang and Qiu (2019) proposed a framework for predicting multiple disease risks using 

directed disease networks and recommendation systems, validating their results with 

real data from two hospitals [15]. While innovative, this study’s reliance on data from 

only two hospitals may limit its generalizability to diverse healthcare settings. 

Lu and Edin (2022) developed a framework for predicting chronic diseases and 

comorbidities, finding the matrix completion of the aggregate graph to be the best-

performing model [16]. This approach offers a novel way to handle missing data in 

medical records, but its effectiveness may vary depending on the sparsity of the input 

data. 

Wang et al. (2020) used Deep Graph Convolutional Networks (GCNs) to analyze and 

predict comorbidities in health records, modelling conditions and features as graph 

nodes [19]. While this method shows potential in capturing complex relationships 

between diseases, its interpretability remains a challenge, which is crucial in clinical 

applications. 

Dibaji and Sulaimany (2023) analyzed a graph-based model with 1190 samples, achieving 

an accuracy of 95% and suggested that examining advanced network features could lead 

to further improvements [2]. This study highlights the potential of graph-based 

approaches in CVD analysis and prediction, but the relatively small sample size may limit 

its statistical power. 

2.4 Comparative Studies 

Several studies have compared different methodologies, providing insights into the 

relative strengths of various approaches. Zariqat et al. (2016) compared five data mining 

classification methods and found that the decision tree with an accuracy of 0.99 

performed best [20]. However, this study’s focus on a single metric (accuracy) may not 

comprehensively evaluate model performance, especially in imbalanced datasets 

common in medical research. 

A study on feature selection techniques and hybrid classifiers showed that the Random 

Forest Bagging method with Relief feature selection achieved a high accuracy of 99.09% 

[10]. While this result is impressive, the study did not extensively explore the trade-offs 

between model complexity and performance, which is crucial for practical 

implementation. 

In conclusion, while these studies have made significant contributions to CVD prediction 

and analysis, there remains a need for more comprehensive approaches that can capture 

the complex relationships within cardiovascular health data. Many studies achieve high 

accuracy rates, but issues such as potential overfitting, limited generalizability, and 

challenges in interpretability persist. Our study aims to address these gaps by combining 

correlation-based graph construction with weighted link prediction algorithms, offering 
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a novel perspective on CVD network analysis that balances accuracy, interpretability, and 

generalizability. 

Table 1  

Summary of Previous Research Conducted on Heart Diseases 

Ref. Year Journal and 
Conference 

Method Evaluation 
Methods 

Best 
Result 

[6] 2023 Health & Social Care in 
the Community Article 
Information 

DT, RF LR, NB & SVM CM & ROC 
Curve 

 
92.11% 

 
[7] 2023 Journal of Big Data Catboost & Gradiant 

Boosting Models 
F1-Score & 
Average 
Accuracy 

Precision 

93% & 
90.94% 

[2] 2023 13th International 
Conference on 
Computer and 
Knowledge 
Engineering (ICCKE 
2023), Ferdowsi 
University of 
Mashhad, Iran 

GBoost, NN, SVM & 
RF 

Accuracy, AUC, 
Precision & 
Recall 

98.7% 

[9] 2023 Sensors NB, LR, MLP, 3NN, 
RF, RotF, 
AdaBoostM1, 
Stacking, Bagging, 
Voting 

Accuracy, 
Precision, Recall, 
AUC 

98.2% 

[11] 2023 Physical Science & 
Biophysics Journal 

Classification & RT, 
HRFLM Classification, 
NB & MLR 

Accuracy, 
Sensitivity, 
Specificity, 
Precision 

88% 

[5] 2022 Network Biology KNN, XGBOOST, LR, 
SVM, AdaBOOST, DT, 
NB, RF 

Accuracy & 
Precision 

99% & 
97% 

[3] 2021 Arabian Journal for 
Science and 
Engineering 

CNN Precision, Recall, 
F1 & Accuracy 

97.06% 

[4] 2021 Mathematics AdaBoost, CatBoost, 
DT, GBoosting, KNN, 
LGBM, LR, RF, SVM & 
XGBRF 

Accuracy, 
Precision, Recall, 
F1 & ROC AUC 

80.25% 

[18] 2021 Webology RBN, MIP, GAN, 
CNN, DBN, Linear 
GAN 

Accuracy, F1, 
Recall 

92.23% 
 

[10] 2021 IEEE Access DT, RF, KNN, AB, GB, 
DTBM, RFBM, 
KNNBM, ABBM & 
GBBM 

Accuracy 99.05% 

[17] 2020 European Journal of 
Heart Failure 

Boosted DT AUC 88% 

 

3. Data and Methodology 

Our study introduces a novel cardiovascular disease (CVD) analysis approach by 

combining correlation-based graph construction with weighted link prediction 

algorithms. This methodology captures complex relationships within CVD data and 

enhances predictive capabilities. The proposed approach consists of the following key 

steps: 
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3.1 Dataset Preparation 

We utilized a heart disease dataset as the foundation for our analysis. This dataset 

contained various features related to cardiovascular health for multiple patients. The 

Cardiovascular Diseases (CVDs) datasets, collected since 1988, serve as a valuable 

resource for medical analysis and machine learning applications. These datasets, sourced 

from Cleveland, Hungary, Switzerland, and Long Beach V, encompass 76 attributes, 

though most research focuses on 14 key features. The primary aim is to predict CVD 

presence in patients using a binary “target” field (1 for presence, 0 for absence). Patient 

identifiers have been removed to ensure privacy. This widely used dataset has been 

instrumental in developing predictive models for heart disease, as evidenced by 

numerous studies summarized in the literature [21]. 

Table 2 

CVD Dataset Information 

Index Attribute 
Name 

Attribute Information 

[1] age Age of the patient in years. 
[2] sex Represented as a binary number. 1 = male, 0 = female. 
[3] cp Chest pain type. Values range from 1 to 4. Value 1: typical angina. 

Value 2: atypical angina. Value 3: non-anginal pain. Value 4: 
asymptomatic 

[4] trestbps Resting blood pressure was measured in mm Hg upon admission 
to the hospital. 

[5] chol Serum cholesterol of the patient was measured in mg/dl. 
[6] fbs Fasting blood sugar of the patient. If greater than 120 mg/dl, the 

attribute value is 1 (true); else, the attribute value is 0 (false). Value 
1 = true. Value 0 = false. 

[7] restecg Resting electrocardiographic results for the patient. This attribute 
can take 3 integer values: 0, 1, or 2. Value 0: normal. Value 1: 
having ST-T wave abnormality (T wave inversions and/or ST 
elevation or depression of > 0.05 mV). Value 2: showing probable 
or definite left ventricular hypertrophy by Estes’ criteria. 

[8] thalach Maximum heart rate achieved of the patient. 
[9] exang Exercise-induced angina. Values can be 0 or 1. Value 1 = yes. 

Value 0 = no. 
[10] oldpeak ST depression induced by exercise relative to rest. 
[11] slope Measure of slope for peak exercise. Values can be 1, 2, or 3. Value 

1: up-sloping. Value 2: flat. Value 3: downsloping. 
[12] ca Number of major vessels (0-3) coloured by fluoroscopy. Attribute 

values can be 0 to 3. 
[13] thal Represents the heart rate of the patient. It can take values 3, 6, or 

7. Value 3 = normal. Value 6 = fixed defect. Value 7 = reversable 
defect. 

[14] target Contains a numeric value between 0 and 4. Each value represents 
a heart disease or absence of all of them. Value 0: < 50% diameter 
narrowing. (Absence of heart disease). Value 1 to 4: > 50% 
diameter narrowing. (Presence of different heart diseases). 
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3.2 Correlation Analysis and Graph Construction 

We employed two correlation methods to analyze relationships within the dataset: 

 Pearson Correlation: 

𝑟 =
∑((𝑋𝑖−𝑋) (𝑌𝑖−𝑌))

√(𝑋𝑖−𝑋)
2

  .   √(𝑌𝑖−𝑌)
2

     

  (1) 

 

Fig. 1. Network created by Pearson Correlation 

We calculated the Pearson correlation coefficient between pairs of samples in the dataset. 

This measure quantifies the linear relationship between variables, ranging from -1 to +1 

[27]. 

 Spearman Correlation: 

𝜌 = 1 −  
6∑𝑑𝑖

2

𝑛(𝑛2−1)
 (2) 

Similarly, we computed the Spearman correlation coefficient, which captures monotonic 

relationships between variables, including non-linear associations [28]. 

Fig. 2. Network created by Spearman correlation 
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3.3 Graph Generation 

For each method, we constructed a graph where: 

 Each line in the dataset corresponds to a node in the graph. 

 Nodes are classified as either 0 (healthy individuals) or 1 (individuals with 

cardiovascular disease). 

 Edges between nodes are established based on a dynamically determined 

threshold limit. 

 Three types of edges can exist: 0-0 (between healthy individuals), 1-1 

(between individuals with CVD), and 0-1 (between a healthy individual and 

one with CVD). 

Threshold Determination Process: 

 We start with a low threshold value and incrementally increase it. 

 At each threshold level, we calculate the number of edges for each type (0-0, 

1-1, and 0-1). 

 We continue increasing the threshold until we reach a point where the 

number of 0-0 edges and 1-1 edges are greater than the number of 0-1 edges. 

 This point is then set as the optimal threshold for edge creation in the graph. 

Rationale for this approach: 

1. Dynamic Adaptation: This method allows the threshold to adapt to the 

specific characteristics of each dataset and correlation method, ensuring 

optimal graph construction. 

2. Improved Intra-Group Correlation: By ensuring that 0-0 and 1-1 edges 

outnumber 0-1 edges, we strengthen the connections within each group 

(healthy and CVD), which is crucial for meaningful network analysis. 

3. Enhanced Discriminative Power: This approach helps create a network 

structure that distinguishes healthy individuals and those with CVD, 

potentially improving the predictive power of subsequent analyses. 

4. Reduction of Noise: By minimizing the relative number of 0-1 edges, we 

reduce potential noise in the network, focusing on the most significant 

correlations within each group. 

5. Balancing Connectivity and Specificity: This method strikes a balance 

between maintaining sufficient network connectivity and ensuring 

specificity in the relationships represented by the edges. 
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3.4 Combined Graph 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 =  [(𝑥, 𝑦, 𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛_𝑐𝑜𝑟𝑟 +  𝑝𝑒𝑎𝑟𝑠𝑜𝑛_𝑐𝑜𝑟𝑟)] (3) 

We developed a Network-based Correlation Integration (NCI) method to combine the 

Pearson and Spearman graphs, resulting in a third, unified graph. This combined graph 

aims to leverage the strengths of both correlation techniques. 

Fig. 3. The combined network created (by Spearman correlation and Pearson 

correlation) 

Table 3  

Graphs Characteristics 

Network Nodes Edges 0-0 1-1 0-1 Threshold Density 

Pearson 1025 4286 1339 1745 1202 0.9997 0.00816 

Spearman 1025 189551 63142 82920 43489 0.8 0. 362 

Combined 1025 191063 62885 83444 44734 1.78 0. 364 
Source: Created by the authors 

3.5 Weighted Link Prediction 

We applied several weighted link prediction algorithms to all three graphs (Pearson-

based, Spearman-based, and combined). These algorithms included [22-25]: 

 Weighted Common Neighbors (WCN) 

WCN(x, y) =  ∑ W(x, z) + W(y, z)z∈|Γ(x)∩Γ(y)|  (3) 

 Weighted Preferential Attachment (WPA) 

𝑊𝑃𝐴(𝑥, 𝑦) =  ∑ 𝑊(𝑥, 𝑧) ∗ 𝑊(𝑦, 𝑧) 𝑧∈|Γ(𝑥)∩Γ(𝑦)|  (3) 

 Weighted Jaccard Coefficient (WJC) 

𝑊𝐽𝐶(𝑥, 𝑦) =  
∑ 𝑊(𝑥,𝑧)+𝑊(𝑦,𝑧)𝑧∈|Γ(𝑥)∩Γ(𝑦)|

∑ 𝑊(𝑥,𝑧1)+∑ 𝑊(𝑦,𝑧2)𝑧2∈|Γ(𝑦)|𝑧1∈|Γ(𝑥)|
 (3) 
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3.6 Performance Evaluation 

To assess the effectiveness of our approach, we calculated two key metrics for each 

graph and prediction algorithm combination [26]: 

 Area Under the Curve (AUC): Measures the overall performance of the 

prediction model. 

 Precision (Pre): Evaluates the accuracy of the predicted links. 

This methodology allows us to compare the efficacy of different correlation-based graph 

constructions and weighted link prediction algorithms in the context of cardiovascular 

disease analysis. By applying these methods to patient data, we aim to uncover hidden 

patterns and relationships that could enhance our understanding and prediction of 

cardiovascular diseases. 

4. Results and Discussion 

4.1 Performance of Weighted Link Prediction Algorithms 

Table 4.  

Results of Evaluation Metrics on Pearson Network 

Algorithms (WLP) AUC  Precision 

WCN 99.8% 48.0% 

WPA 70.0% 18.6% 

WJC 99.7% 73.6% 
Source: Created by the authors 

 

Fig. 4. Bar chart to compare AUC and Precision results obtained from link prediction in 

Pearson network 

Table 5 

Results of Evaluation Metrics on Spearman Network 

Algorithms (WLP) AUC Precision 

WCN 95.1% 59.74% 

WPA 70.0% 25.35% 

WJC 96.6% 67.16% 
Source: Created by the authors 
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Fig. 5. Bar chart to compare AUC and Precision results obtained from link prediction in 

Spearman network 

Table 6 

Results of Evaluation Metrics on Combined Network 

Algorithms (WLP) AUC Precision 

WCN 94.7% 56.69% 

WPA 70.2% 25.41% 

WJC 96.2% 65.22% 

Source: Created by the authors 

Fig. 6. Bar chart to compare AUC and Precision results obtained from link prediction in 

Combined network 

The results of our study demonstrate the effectiveness of correlation-based network 

analysis and weighted link prediction algorithms in cardiovascular disease analysis. 

Tables 4, 5, and 6 present each algorithm’s performance metrics (AUC and Precision) 

across the three networks: Pearson, Spearman, and Combined. 

 Pearson Network Results: 

The Pearson correlation-based network showed strong performance across 

all algorithms (Table 4). The Weighted Common Neighbors (WCN) 

algorithm achieved the highest AUC of 99.80%, while the Weighted Jaccard 

Coefficient (WJC) demonstrated the best Precision at 73.60%. These results 

suggest that the Pearson network effectively captured linear relationships in 

the CVD data. 

 Spearman Network Results: 

The Spearman correlation-based network also showed robust performance 

(Table 5). The WJC algorithm performed best on this network, with an AUC 

of 96.60% and Precision of 67.16%. The strong performance of the Spearman 

network indicates its ability to capture non-linear relationships in the data. 
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 Combined Network Results: 

The combined network, integrating both Pearson and Spearman correlations, 

showed comparable performance to the individual networks (Table 6). The 

WJC algorithm again performed best, with an AUC of 96.20% and Precision 

of 65.22%. These results suggest that the combined approach offers a 

balanced representation of the data’s linear and non-linear relationships. 

4.2 Comparative Analysis 

Our network-based approach, particularly using the Pearson and Spearman networks, 

demonstrated competitive performance compared to existing methods in the literature. 

The high AUC values (>95%) across all networks indicate excellent discriminative power 

in predicting CVD links (Figure 7). 

Fig. 7. Comparison of the highest results of weighted link prediction in each network 

4.3 Network Characteristics and Performance 

The performance differences between networks can be attributed to their structural 

properties. The Pearson network’s high performance may be due to its ability to capture 

strong linear correlations in the CVD data. The Spearman network’s robust performance 

suggests it effectively represents non-linear relationships. 

4.4 Advantages of the Network-Based Approach 

Our model offers several advantages over traditional methods: 

 Feature Dependency: The model accounts for complex interactions between 

features. 

 Non-linear Relationships: The approach can capture both linear and non-

linear relationships within the CVD data. 

 High Accuracy: The method achieved high AUC values across all networks, 

indicating strong predictive power. 
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4.5 Limitations and Future Directions 

Despite the promising results, our study has limitations that warrant further 

investigation: 

 Dataset Size: The sample size of 1,025 cases may limit generalizability. 

Future studies should validate these methods on larger, more diverse 

datasets. 

 Computational Complexity: Optimizing these algorithms for practical 

implementation in clinical settings is an important area for future research. 

 Edge Threshold: Further investigation into optimal threshold selection for 

network construction is needed. 

 Clinical Application: Addressing challenges such as incomplete data and 

the need for continuous model updates is crucial for real-world 

implementation. 

 Algorithm Limitations: Due to computational constraints, we were unable 

to test the WAA and WRA algorithms. Future studies with access to high-

performance computing resources should also evaluate these algorithms. 

Our study demonstrates the potential of correlation-based network analysis and 

weighted link prediction algorithms in cardiovascular disease link prediction. The strong 

performance across network types suggests that this approach could significantly 

contribute to CVD diagnosis and treatment advances. However, further research is 

necessary to address the limitations and validate these findings across diverse datasets 

and clinical settings. 

Conclusion 

Our research into correlation-based graph construction and weighted link prediction 

algorithms for cardiovascular disease analysis has yielded promising results, potentially 

revolutionizing the field of CVD prediction and management. The exceptional 

performance of the Pearson correlation-based network, particularly when coupled with 

the Weighted Common Neighbor algorithm, demonstrates the power of network analysis 

in capturing complex relationships within medical data. 

This approach offers several advantages over traditional methods, including the ability 

to account for feature dependencies and non-linear relationships, resulting in remarkably 

high accuracy. The success of our model in predicting links within the CVD dataset 

suggests that it could be a valuable tool for identifying hidden patterns and associations 

in patient data, potentially leading to earlier and more accurate diagnoses. 

However, it is crucial to acknowledge the limitations of our study, including the 

relatively small dataset size and computational complexity of graph-based methods. 

These challenges present opportunities for future research, particularly in optimizing 

algorithms for real-time clinical applications and validating results across larger, more 

diverse datasets. 
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As we look to the future, the potential applications of this methodology extend beyond 

cardiovascular diseases. This network-based approach could be adapted to analyze other 

complex medical conditions, contributing to the broader field of precision medicine. By 

continuing to refine and expand upon this work, we can move closer to developing more 

sophisticated, personalized approaches to disease prediction, prevention, and treatment. 

In conclusion, while further research and validation are necessary, our study represents 

a significant step forward in the application of advanced data analysis techniques to 

cardiovascular health. As we continue to bridge the gap between data science and 

medical research, we open new avenues for improving patient outcomes and advancing 

our understanding of complex diseases. 

Data Availability 

The dataset utilized in this article is accessible on the Kaggle platform and is freely 

available to the public. It can be accessed via the following link: 

https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset.  
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